以碳纖維修復高強度混凝土含開孔深梁

*李岱融(Tai-Jung Lee) 中國科技大學室內設計研究所

本研究旨在以貼碳纖維(CFRP)方式修復含開孔深梁。共製作6支含開孔深梁 進行兩次剪力強度試驗,第1次試驗後,6支發生剪力破壞之梁於正反面各貼1層 CFRP,再進行第二次剪力試驗。比較兩次試驗結果得知,貼1層CFRP方式修復 剪力破壞之含開孔深梁應仍屬可行。

關鍵詞:深梁、梁腹開孔、剪力強度、碳纖維

HIGH-STRENGTH CONCRETE DEEP BEAMS WITH WEB OPENINGS REPAIRED BY CFRP

Abstract

The objective of this study is to investigate the repairing effectiveness of carbon fiber reinforced polymer (CFRP). A total of 6 high-strength concrete deep beams with web openings were tested. In the first phase of test, all beams were failed by shear. After the first phase of test, six controlled beams were wrapped with one layer of CFRP on both sides of specimens. The results in the second phase of test indicate that six controlled beams may be repaired by wholly wrapped with one layer of CFRP on both sides.

Keywords : deep beams; web openings; shear strengths; carbon fiber reinforced plastics (CFRP)

一、前言

一般建築物為了滿足其使用上之需求,常須設置各種水電管線,而實務上若 能將建築物中的梁預留管線孔以便各種水電管線穿越,如此將可增加建築物各樓 層之淨高度。根據鋼筋混凝土設計規範(ACI 2011),淨跨度(*l_n*)與有效深度(*d*)之 比值(*l_n/d*)不超過4之梁即歸類為深梁。一般常見鋼筋混凝土深梁為了讓水電管 道及網路系統等通過(Yang et al. 2007)而在其梁腹開孔,此即所謂含開孔鋼筋混 凝土深梁。含開孔深梁為剪力強度主控的桿件(Kong and Sharp 1973, Kong and Sharp 1977, Yang et al. 2007, Yang and Ashour 2008, 呂等人 2013),有鑒於剪力 破壞為一無預警效果之脆性破壞,其確為工程設計所最不樂見之破壞模式。

台灣老舊鋼筋混凝土建築物相當多,每當構件損壞就打掉重練,既勞民又傷 財,且與目前節能減廢、環保再生之潮流並不符合,因此採用修復、補強方式來 延長破損之梁、柱及樓板等結構構件之使用年限,確有其必要性。本研究共製作 6支高強度混凝土含開孔深梁試體,嘗試以貼CFRP或低壓灌注環氧樹脂(LPEI)之 方式來修復剪力破壞之含開孔深梁。

二、試驗規劃

2.1 試體詳細資料

典型之含開孔深梁之試體設計如圖1所示,其中含開孔深梁之寬度(b)、 深梁之全深度 (h)及有效深度 (d)分別為 100 mm, 300 mm 及 275 mm。混 凝土之抗壓強度 (f'_c)、開孔寬度與剪力跨度(a)之比值 (m_h)、開孔深度與

深梁全深度之比值 (m_v) 、開孔之水平位置係數 (k_h) 及垂直位置係數 (k_v) ,如

表1所示。表1中試體之編號分成4部份,第1部份為混凝土之強度,H代表高 強度混凝土,第2部份為開孔尺寸,S代表小開孔(尺寸為60×40 mm),L代 表大開孔(尺寸為68×68 mm),第3部份為開孔高度,U、M及D分別代表高 孔、中孔及低孔,第4部份為碳纖維配置狀況,OO、H2及V2分別代表無包 覆碳纖維、水平方向包覆兩層碳纖維及垂直方向包覆兩層碳纖維。圖1中撓 曲鋼筋係採用2-#5鋼筋,深梁開孔上方 y_o=25 mm處則配置2-#4水平鋼筋。 深梁之撓曲鋼筋及開孔上方水平鋼筋之兩端皆各焊接-100×50×6之鋼鈑

2.2 材料性質

作為錨定(圖1)。

鋼筋之性質詳如表2所示,其中鋼筋降伏應力除以鋼筋彈性模數200000 MPa,可算得#4及#5鋼筋之降伏點應變別為0.0016及0.0021。本研究高強度 混凝土之抗壓強度平均值為101.4 MPa(表3)。碳纖維材料之性質詳如表4, 碳纖維之抗拉強度、每層之厚度及彈性模數分別為3900 MPa、0.166 mm及 230000 MPa。採用兩點加載方式進行含開孔深梁之剪力強度試驗,顧及加 載時施力點及支承點可能產生混凝土局部壓碎之現象,各試體載重施力點及 支承點皆預埋4塊100×50×6之鋼鈑(圖1),以避免試體因混凝土局部壓碎而 發生早天型破壞。表5中,低壓灌注環氧樹脂之抗拉強度高達48.7 MPa 約為 其抗壓強度70.5 MPa之70%。

2.3 試驗步驟

如圖1所示之含開孔深梁試體,其開孔上方水平鋼筋之A及B兩點及撓曲 鋼筋之C點分別粘貼鋼筋應變計,以便試體在進行剪力強度試驗時,量測鋼 筋應變。各試體在測試之前先塗上白色水泥漆,以便試驗進行時觀察裂縫分佈情形。第1次剪力強度試驗,試體之加載裝置如圖2所示,試體下方安裝一LVDT以量測變位。試驗進行時,載重經由SHIMADZU 100噸萬能試驗機往下加壓,在加載過程中約每隔15噸暫停加壓,以便繪製裂縫分佈。

三、試驗結果

3.1 第1次試驗

當載重不超過極限載重的四分之一時,含開孔深梁試體皆沒有明顯之裂 縫產生。載重約超過四分之一極限載重以後,試體之初始裂縫會在沿著深梁 自然傳力路徑上之開孔角落A和B處形成(圖3)。本研究第1次剪力試驗含開孔 深梁試體之試驗觀察顯示,在開孔角落附近形成之初始裂縫並沒有隨著載重 之增加而繼續發展。推測造成此現象的原因,可能是含開孔深梁對於載重之 傳遞,剛開始時仍然是沿著深梁之自然傳力路徑傳遞(也就是沿著深梁載重 施力點與支承間之最短路徑傳遞),如圖3所示。但隨著作用剪力之增加,由 於深梁在其自然傳力路徑上受到梁腹開孔之干擾,迫使含開孔深梁之剪力傳 遞路徑必須繞過開孔,如此將導致深梁之剪力傳遞路徑需分流為上、下兩個 剪力傳遞路徑Kong and Sharp (1973, 1977),故而終止此項開孔角落附近初始 裂縫之發展(圖3)。當載重值約超過極限載重的二分之一時,含開孔深梁在 跨度中央附近會有撓曲裂縫形成,且在沿著梁腹開孔上方及梁腹開孔下方之 傳力路徑上會開始有對角裂縫形成。隨著作用剪力之繼續增加,梁腹開孔上 方及梁腹開孔下方會有愈來愈多之對角裂縫形成,且原先已存在之對角裂縫 會繼續延伸,裂縫之寬度也會隨著作用剪力之增加而加寬。此時由於對角裂 縫之間的混凝土仍可傳遞壓力,故含開孔深梁並不會立即破壞。最後控制梁 在極限剪力作用下,因其對角裂縫之間的混凝土被擠碎而宣告破壞。

第1次剪力試驗之結果如表5所示,本研究第1次剪力試驗中,6支含開孔 深梁之破壞模式皆為剪力破壞。表5顯示,小開孔深梁之剪力強度,較大開 孔深梁之剪力強度高。根據表5之測試數據可算得開孔尺寸60×40mm之深 梁較開孔尺寸68×68mm之深梁約高出15%之剪力強度。

3.2 第2次試驗

完成第1次剪力試驗後, 6支剪力破壞之控制梁,在其正面及背面各貼 一層CRFP進行修復,如圖4所示。上述6支經修復之試體於自然養護14天後, 進行第2次剪力強度試驗,以探討修復成效。表6顯示貼CFRP修復試體之試 驗結果,本文定義含開孔深梁之修復指數為第2次試驗所得之剪力強度除以 第1次試驗所得之剪力強度。由表6之修復指數平均值為1.02而變異係數為 0.18看來,本研究6支控制梁發生剪力破壞後,應可藉著貼CRFP而恢復其抗 剪強度(表10)。圖5為以CFRP修復試體之載重與變位曲線比較圖,圖5中實 線及虛線分別為第1次試驗及第2次試驗所得之載重與變位曲線。圖5顯示, 經CFRP修復之試體,其載重與變位曲線之斜率會增加。

四、測試比對

由於目前設計規範(ACI, 2011)尚未有針對含開孔深梁剪力強度之計算 方法可供參考,本研究採用Kong and Sharp (1977)所提出之經驗公式來計算 含開孔深梁之剪力強度:

$$V_{bv,calc} = V_c + V_s = C_1 \left(1 - \frac{0.35k_1 x}{k_2 h} \right) f_t b k_2 h + \sum \lambda C_2 A \frac{y_1}{h} \sin^2 \alpha_1 \quad (1)$$

其中, V_c 為混凝土所貢獻之剪力強度, V_s 為銅筋所貢獻之剪力強度, C_1 為 試驗常數,對於常重混凝土取 C_1 =1.4,對於輕質混凝土取 C_1 =1.35; $k_1 Q k_2$ 為 與深梁開孔位置有關之係數(圖6), f_i 為混凝土圓柱劈裂抗拉強度;b為深梁 寬度; C_2 為與鋼筋表面狀況有關之試驗常數,對於竹節鋼筋取 C_2 =300 MPa,對於光面鋼筋取 C_2 =130 MPa; λ 為試驗常數,對於剪力鋼筋取 λ =1.5,對於撓曲主鋼筋取 λ =1.0;A為每組穿越對角裂縫鋼筋之截面積; y_1 為鋼筋與對角裂縫相交點之深度(圖6); α_1 為鋼筋與對角裂縫之夾角(圖6)。 式(1)中,含開孔深梁之剪力強度 $V_{bv,calc}$ 是由混凝土所貢獻之剪力強度 V_c 加 上鋼筋所貢獻之剪力強度 V_s 。根據Kong and Sharp (1977),混凝土所貢獻 之剪力強度 V_c 僅考慮下部傳力路徑之貢獻,混凝土之抗剪應力係考慮深梁之 開孔位置而以混凝土之抗拉強度 f_i 乘上經驗常數 C_1 來計算。而混凝土所貢 獻之剪力強度 V_c 則取為混凝土抗剪應力乘以深梁開孔下方之抗剪面積 (bk_2h)。根據Kong and Sharp (1977),鋼筋所貢獻之剪力強度 V_s 係採計各

組穿越開裂面(如圖6之 AE 及 BC)鋼筋之抗剪強度來加總計算。值得注意的 是,式(1)中並未考慮鋼筋之降伏應力而係以試驗常數 $\lambda Q C_2$ 來粗估鋼筋之 貢獻,Kong and Sharp (1977)對於穿越開裂面之剪力鋼筋,規定其 λ 取為 1.5,而穿越開裂面之撓曲鋼筋 λ 則取為1.0,對於竹節鋼筋取 C_2 =300 MPa, 對於光面鋼筋則取 C_2 =130 MPa。Kong and Sharp (1977)認為鋼筋埋置位置 愈深,亦即 y_1 愈大者,其抗剪效果愈好,此即式(1)第二項中需乘以鋼筋之 深度效應係數 y_1/h 。此外,本研究對於每一組穿越開裂面之碳纖維包覆層 係考慮成剪力鋼筋,故對於含碳纖維試體,式(1)中之鋼筋截面積A之計算 除了原先穿越開裂面鋼筋之截面積外,尚須將碳纖維包覆層之截面積 A_{CFRP} 納入計算。

本文以Kong and Sharp (1977)之經驗公式做為分析工具,來預測高強度混凝 土含開孔深梁之剪力強度。本文在表7中定義含開孔深梁剪力強度之強度比 值(V_{bv,test}/V_{bv,calc}),其為含開孔深梁剪力強度之測試值除以含開孔深梁剪力強 度之分析值,此一數值可以幫助了解Kong and Sharp (1977)經驗公式之精確 度。由表7可知,Kong and Sharp (1977)之經驗公式對本研究高強度混凝土含 開孔深梁試體第1次剪力試驗能得到相當不錯的預測精度,其強度比值之平 均數為1.28 而變異係數為0.09。對於不同開孔尺寸、不同開孔高度之含開孔 深梁,Kong and Sharp (1977)之經驗公式對於高強度混凝土含開孔深梁皆能 得到相當一致且偏於保守地剪力強度預測(表7)。對於第2次剪力試驗而言, 以Kong and Sharp (1977)之經驗公式來預測修復後含開孔深梁之剪力強度仍 屬可行(表8)。

五、結論

本研究共製作6支含開孔深梁進行兩次剪力強度試驗,第1次試驗後以貼 CFRP方式對6支剪力破壞之含開孔深梁進行修復,並於養護14天後進行第2 次剪力試驗。根據研究所得,茲做下列結論:

 開孔尺寸為影響含開孔深梁剪力強度最重要之變數。試驗結果顯示,對 於各種不同開孔高度及不同碳纖維補強方式之試體而言,開孔尺寸

60×40mm之深梁較開孔尺寸68×68mm之深梁約高出15%之剪力強度。

 發生剪力破壞之含開孔深梁,應可藉著在其正面及背面各貼一層CRFP 而恢復其抗剪強度。

3. Kong and Sharp (1977)之經驗公式對於高強度混凝土含開孔深梁皆能得 到相當一致且偏於保守地剪力強度預測。對於第2次剪力試驗而言,以Kong and Sharp (1977)之經驗公式來預測修復後含開孔深梁之剪力強度仍屬可行。

參考文獻

American Concrete Institute (2011), "Building code requirements for structural concrete (ACI 318-11) and Commentary (ACI 318R-11)", Farmington Hills, Mich.

Kong, F.K. and Sharp, G.R. (1973), "Shear strength of lightweight reinforced concrete deep beams with web openings", The Structural Engineer, 51(8), 267-275.

Kong, F.K. and Sharp, G.R. (1977), "Structural idealization for deep beams with web openings", Magazine of Concrete Research, 29(99), 81-91.

Lu, W.Y., Yu, H.W., Chen, C.L., Liu, S.L. and Chen, T.C., (2015)

"High-Strength concrete deep beams with web openings strengthened by carbon fiber reinforced plastics", Computers and concrete, 15(3), pp. 357-372. Yang, K.Y., Chung, H.S and Ashour, A.F. (2007), "Influence of inclined web reinforcement on reinforced concrete deep beams with openings", ACI Structural Journal, 104(5), 580-589.

Yang, K.Y. and Ashour, A.F. (2008), "Effectiveness of web reinforcement around openings in continuous concrete deep beams", ACI Structural Journal, 105(4), 414-424.

呂文堯、游新旺、陳俊良、黃淑敏,(2013)「包覆碳纖維對含開口深梁剪力 強度之影響」,中正嶺學報,第42卷,第2期,pp.207-218.

試體編號	f_c' (MPa)	CFRP	m_h	m_{v}	k_{h}	$k_{_{v}}$
HSU00	101.4	無	0.511	0.133	0.213	0.500
HSM00	101.4	無	0.511	0.133	0.213	0.433
HSD00	101.4	無	0.511	0.133	0.213	0.367
HLUO0	101.4	無	0.579	0.227	0.145	0.500
HLMOO	101.4	無	0.579	0.227	0.145	0.387
HLDO0	101.4	無	0.579	0.227	0.145	0.273

表1 試體詳細資料(Specimen details)

表 2 鋼筋之性質(Properties of reinforcement)

號數	f_y (MPa)	$\boldsymbol{\mathcal{E}}_{y}$ +	f_u (MPa)	備註
#4	327 MPa	0.0016	467 MPa	開口上方之水平鋼筋
#5	414 MPa	0.0021	579 MPa	撓曲鋼筋

表 3 混凝土之性質(Properties of concrete)

設計強 度	平均強度	水膠比	坍度	粗骨材最 大粒徑	單位重
100 MPa	101.4 MPa	0.20	250 mm	13 mm	2491 kg/m ³

表 4 CFRP之性質(Properties of CFRP)

抗拉強度	每層厚度	彈性模數	單位重	極限應變
3900 MPa	0.166 mm	230000 MPa	300 g/m^2	0.015

試體編號	$m_h a \times m_v h$	$k_v h^+$ mm	V _{bv,test} (kN)	破壞模式
HSU00	60×40 mm	150	251.4	剪力破壞
HSMOO	60×40 mm	130	251.4	剪力破壞
HSD00	60×40 mm	110	260.7	剪力破壞
HLUOO	68×68 mm	150	222.5	剪力破壞
HLMOO	68×68 mm	116	225.9	剪力破壞
HLDO0	68×68 mm	82	216.1	剪力破壞

表 5 第1次剪力試驗之結果(Results in the first phase test)

表6 貼CFRP之修復成效(Repairing effectiveness)

試體編號	V _{bv,test} kN 第1次試驗	V _{bv,test} kN 第2次試驗	修復指數
HSUOO	251.4	222.5	0.88
HSMOO	251.4	202.9	0.81
HSD00	260.7	343.0	1.32
HLUOO	222.5	234.2	1.05
HLMOO	225.9	210.7	0.93
HLDO0	216.1	240.1	1.11
Total		AVG	1.02
6		COV	0.18

表 7 第1次試驗之測試比對(Experimental verification: First phase)

試體編 號	開孔尺寸 m _h a×m _v h	開孔高度 k _v h	V _{bv,test} kN	V _{bv,calc} kN	$\frac{V_{bv,test}}{V_{bv,calc}}$
HSU00	60×40 mm	150 mm	251.4	208.3	1.21
HSM00	60×40 mm	130 mm	251.4	198.1	1.27
HSD00	60×40 mm	110 mm	260.7	186.3	1.40
HLUO0	68×68 mm	150 mm	222.5	196.6	1.13
HLMO0	68×68 mm	116 mm	225.9	177.2	1.27
HLDO0	68×68 mm	82 mm	216.1	151.9	1. 42
Total				AVG	1.28
6				COV	0.09

計興	$m_h a \times m_v h$	$k_v h$	修復	$V_{bv,test}$	$V_{bv,calc}$	$V_{bv,test}$
时月里	mm	mm	方法	kN	kN	$V_{bv,calc}$
HSU00	60×40	150	CFRP	222.5	225.0	0.99
HSM00	60×40	130	CFRP	202.9	214.0	0.95
HSD00	60×40	110	CFRP	343.0	201.3	1.70
HLU00	68×68	150	CFRP	234.2	212.0	1.10
HLMO0	68×68	116	CFRP	210.7	190.6	1.11
HLDO0	68×68	82	CFRP	240.1	163.3	1.47
Total					AVG	1.22
6					COV	0.25

圖 1 第1次試驗之含開孔深梁試體(控制梁) 圖 2 試體加

圖 2 試體加載安裝圖

圖 3 第1次試驗含開孔深梁 圖 4 試體正反面貼1層CFRP修復 之典型破壞裂縫圖

圖 5 載重與變位曲線比較圖

圖 6 Kong and Sharp (1977)公式示意圖