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Abstract 

The higher order geometric stiffness matrix of a tetrahedral element is presented in 

this paper. The Derivation is based on the concept of rigid body motion. The element has 

four nodes. Each node has three degrees of freedom. The element can satisfy the 

requirements of the Rigid Body Rule and Incremental Force Equilibrium test. Because 

that the coefficients exiting in the higher order geometric stiffness matrix of the 

tetrahedral element are shown in explicit expressions, this makes engineers be easy to 

conduct it in numerical programs of the geometric nonlinear analysis of the solid 

structures. 
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1. introduction

To state the motion, one-parameter function of time (t) of a material body moving 

in a Euclidean Space, is portrayed in Figure 1.1. A referential frame is always required 

[1,2] to formulate the status.  

Figure 1.1 Motion of a material 

body  

𝑢𝑖,𝑣𝑖,𝑤𝑖 
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Figure 1.2 A tetrahedral element 

with 12 degrees of freedom 
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Conventionally, using initial undeformed state, or current (known) deformed 

state as the references are denoted total Lagrangian description, ( 𝑡 = 𝑡0), or updated 

Lagrangian description at  𝑡 = 𝑡1 respectively. The left subscript of a symbol denotes 

its reference. The 𝐶0 and 𝐶1denote the initial undeformed configuration and current 

deformed configuration respectively. By the variational principle, the approximation to 

the solution of the desired state is available, the product of Piola_Kirchhoff stresses 

and Green-Largrangian strains for more detail referred to [1]. For example, a 

tetrahedral element has nodal forces with three degrees of freedom per node as shown 

in Figure 1.2. The element nodal displacement vectors {𝑞} can be denoted as 

{𝑞}𝑇 = ∑ {𝑢𝑖,𝑣𝑖,𝑤𝑖}
4
𝑖=1 (1.1)  

The initial force vectors { 𝑓1 } is

{ 𝑓1 }
𝑇

= ∑ {𝑓𝑥𝑖,𝑓𝑦𝑖,𝑓𝑧𝑖,}
𝑛−𝑡ℎ
𝑖=1 (1.2)     

In general, based on the principle of virtual work. Conventionally with the aid of shape 

functions related to the element nodal degrees of freedom, a geometrically nonlinear 

tetrahedral element can be derived, it can be written as 

{ 𝑓1
2 } = { 𝑓1

1 } + [𝑘𝑔]{𝑞} + [∆𝑘𝑔]{𝑞} + [𝑘𝑒]{𝑞} (1.3)

Matrices[𝑘𝑔], [∆𝑘𝑔], and[𝑘𝑒]denote the geometrical stiffness matrix, the higher-

order stiffness matrix, and the linear elastic matrix, respectively. Vectors { 𝑓1
2 }and{ 𝑓1

1 } 
denote the nodal force vectors of the element at 𝐶0 and 𝐶1, respectively. 

2. Property of the geometric and higher order stiffness matrices

From Yang and Kuo [1] in 1994, they had established geometric nonlinearly 

elements include truss, beam and space frame elements. All of them satisfy physical 

intuitive requirements. Based on the rigid body rule, one can write down  

[𝑘𝑔]{𝑞𝑟} = { 𝑓1
2 } − { 𝑓1

1 } (2.1) 

where {𝑞𝑟} represents the rigid displacements of a tetrahedral element,Let us illustrate 

a tetrahedral element has four nodes and its in-plane displacements which are approximated 

by a set of linear interpolation functions. It can be written as  

𝑢 = 𝐿𝑖𝑢𝑖; 𝑣 = 𝐿𝑖𝑣𝑖; 𝑤 = 𝐿𝑖𝑤𝑖, (2.2) 

where 𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖 represent the i-th nodal displacements of the tetrahedral element 

in the three axes. Its shape functions can be written as  

𝐿𝑖 =
1

6𝑉
(𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦 + 𝑑𝑖𝑧) (2.3) 

where 

[𝑉] =
1

6
𝑑𝑒𝑡 [

1 𝑥𝑖

1 𝑥𝑗

𝑦𝑖 𝑧𝑖

𝑦𝑗 𝑧𝑗
1 𝑥𝑘

1 𝑥𝑚

𝑦𝑘 𝑧𝑘

𝑦𝑚 𝑧𝑚

] ; 𝑎𝑖 = 𝑑𝑒𝑡 [

𝑥𝑗 𝑦𝑗 𝑧𝑗
𝑥𝑘 𝑦𝑘 𝑧𝑘

𝑥𝑚 𝑦𝑚 𝑧𝑘

] 
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𝑏𝑖 = −𝑑𝑒𝑡 [

1 𝑦𝑗 𝑧𝑗
1 𝑦𝑘 𝑧𝑘

1 𝑦𝑚 𝑧𝑘

] ; 𝑐𝑖 = 𝑑𝑒𝑡 [

𝑥𝑗 1 𝑧𝑗
𝑥𝑘 1 𝑧𝑘

𝑥𝑚 1 𝑧𝑘

] ; 𝑑𝑖 = −𝑑𝑒𝑡 [

𝑥𝑗 𝑦𝑗 1

𝑥𝑘 𝑦𝑘 1
𝑥𝑚 𝑦𝑚 1

] 

here V represents the volume of the element. Substituting Equations (2.4) and (2.5) 

into (2.2), it yields  

[𝑘𝑔] =
1

6𝑉
[

𝐴11 𝐴12

𝐴21 𝐴22

𝐴13 𝐴14

𝐴23 𝐴24

𝐴31 𝐴32

𝐴41 𝐴42

𝐴33 𝐴34

𝐴43 𝐴44

] (2.4) 

Where 

𝐴𝑖𝑗 =

[

𝑏𝑗 𝐹𝑥𝑖
1 + 𝑐𝑗 𝐹𝑦𝑖

1 + 𝑑𝑗 𝐹𝑧𝑖
1

𝑏𝑗 𝐹𝑥𝑖
1 + 𝑐𝑗 𝐹𝑦𝑖

1 + 𝑑𝑗 𝐹𝑧𝑖
1

𝑏𝑗 𝐹𝑥𝑖
1 + 𝑐𝑗 𝐹𝑦𝑖

1 + 𝑑𝑗 𝐹𝑧𝑖
1

]

(2.5) 

Here we easily derive the geometric stiffness matrix of the element based on 

Equations (2.4) and (2.5).  

In order to determine the higher order stiffness matrix, the rigid body rule should 

be described here first. Let us see Figure 2.1 

Figure 2.1(a) Before a rigid body rotation 

Figure 2.1(b) After a rigid body rotation 
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When there is a column member founded and built on surface of earth, one sees a pair 

of initial forces exerted on its two both end sides, i.e., Figure 2.1 (a) and after rotations, i.e., 

Figure 2.1 (b). One sees that the forces will accompany and follow the earth rotations 

without changing its magnitudes but its directions. By inspection this physical phenomena, 

Yang and Chiou [2] proposed the so call rigid body test to verify the nonlinear element. It 

can be expressed as follows 

[𝑘𝑔]{𝑢𝑟} = { 𝑓1
𝑟 } − { 𝑓1

1 } (2.6)

{ 𝑓1
𝑟 } = [𝑅]{ 𝑓1

1 } (2.7) 

Equations (2.6) and (2.7) represent all mechanical natural behavior of materials 

from physical institutive concepts. [𝑅] represents a rotation matrix. With the aid of 

Equation (2.7), Equation (2.6) can be written as follows 

[𝑘𝑔]{𝑢𝑟} = [𝑅]{ 𝑓1
1 } − { 𝑓1

1 } (2.8) 

It can be said that initial force vectors of the element will follow the element rigid 

body motions without changing its magnitudes. One can set a corollary that if element 

has a stretch effect that will generate incremental internal forces{ 𝑓1 }at first and then

accompany and follow rigid body rotations, one can write the following equation 

[∆𝑘𝑔]{𝑢𝑟} = [𝑅]{ 𝑓1 } − { 𝑓1 } (2.9) 

Equation (2.9) was used to derive the higher order geometric stiffness matrix of the 

framed element by Chang [3]. Herein it also holds for the motions of the tetrahedral 

element under stretching effects at first and accompanying by rigid body motions. Once 

the geometric stiffness matrix[𝑘𝑔] is derived, the higher order stiffness matrix of the 

element can be formed just merely by changing the initial forces in the geometric 

stiffness matrix stead of the incremental forces{ 𝑓1 }. One can easily establish the higher

order stiffness matrix of a tetrahedral element by changing 𝐴𝑖𝑗 as ∆𝐴𝑖𝑗 in Equation 

(2.4) as follows 

∆𝐴𝑖𝑗

=

[

𝑏𝑗 𝐹𝑥𝑖1 + 𝑐𝑗 𝐹𝑦𝑖1 + 𝑑𝑗 𝐹𝑧𝑖1

𝑏𝑗 𝐹𝑥𝑖1 + 𝑐𝑗 𝐹𝑦𝑖1 + 𝑑𝑗 𝐹𝑧𝑖1

𝑏𝑗 𝐹𝑥𝑖1 + 𝑐𝑗 𝐹𝑦𝑖1 + 𝑑𝑗 𝐹𝑧𝑖1 ]

(2.10) 

The derived element also satisfies the requirements of the Rigid Body Rule and 

Incremental Force Equilibrium test proposed by Chi and Kuo [4]. In this study the 

element lacks of moment effects, the equation can be written as follows.  

[𝑘𝑔]𝑇{𝑢𝑟} = [𝑅]{ 𝑓1
1 } − { 𝑓1

1 } (2.10) 

As for the higher order stiffness matrix of the tetrahedral element is satisfied the 

requirements test. 

[∆𝑘𝑔]𝑇{𝑢𝑟} = [𝑅]{ 𝑓1 } − { 𝑓1 } (2.11) 
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3. Test Example

A Solid Wedge under a point load 

Figure 3.1 shows a wedge under a down ward load at the apex of the wedge 

structure. It was modelled by 28 tetrahedral elements. The boundary conditions are as 

shown in Figure 3.1. Results of the analysis behaviour show improvement on the 

analysis of the solid wedge under a point load with a little stiff than just considerations 

geometrical stiffness parts in the analysis as shown in Figure 3.2.  

Figure 3.1 Geometry, material properties and the layout of solid wedge under a 

downward point load applied at the apex of the wedge 

Figure 3.2 Post-buckling response of the solid wedge under a down ward point 

load applied at the apex of the wedge 

4. Conclusion
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 In this paper, the explicit higher order geometric stiffness matrix of tetrahedral 

element can be derived based on using the concept of rigid body rule. All terms in the 

higher order geometric stiffness matrix of the tetrahedral element are explicit. One uses 

exiting geometrical stiffness matrix to derive the higher order geometrical stiffness 

matrix of the tetrahedral element based on physically intuitive concepts of rigid body 

motions. For example it shows with the higher order stiffness matrix in the analysis the 

structures behave little stiff than convectional using geometrical stiffness only. 
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